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The importance of the nonequilibrium effect of the turbulent-energy-production process is discussed in
the context of the inertial-range energy spectrum. A dynamical property of the process related to the
Lagrange derivative of the turbulent-energy transfer rate gives rise to an important deviation of the
inertial-range spectrum from Kolmogorov’s ~§ power law at the energy-containing side. Through this
deviation, the turbulent-viscosity concept possesses a nonequilibrium character that is indispensable for
describing statistically highly time- and space-dependent properties of turbulence. It is concluded that
the inertial-range energy spectrum cannot be specified using only the energy transfer rate.

PACS number(s): 47.27.—i

I. INTRODUCTION

Theoretical studies of turbulence have been done main-
ly using two approaches. One approach aims at clarify-
ing the similarity properties of small-scale structures of
turbulence. The representative finding is Kolmogorov’s
scaling law [1] leading to the —3 power law for the
inertial-range spectrum. The derivation of this power
law using the Navier-Stokes equation has been one of the
main purposes of two-point closure theories such as
Kraichnan’s direct-interaction approximation (DIA)
[2,3].

Experimental studies of small-scale turbulence struc-
tures have revealed the breakdown of the Kolmogorov
scaling law, specifically, in the velocity-derivative statis-
tics to which fine-scale fluctuations mainly contribute. In
order to avoid this difficulty, various models based on
different probabilistic properties of the local energy dissi-
pation rate have been proposed. The representative ex-
amples are the log-normal model of Kolmogorov [4] and
the 8 model of Frisch, Sulem, and Nelkin [5]. The validi-
ty of these models was discussed by Nakano and Nelkin
[6] using a dynamical scaling argument. More elaborate
models based on the multifractal concept have recently
been developed to incorporate the detailed statistical
properties of the local energy dissipation rate (see [7] and
the references cited therein).

Another approach to turbulence is the one-point tur-
bulence modeling [8] for the study of turbulent shear
flows that are important in engineering and scientific flow
phenomena. Such modeling is roughly classified into the
turbulent-viscosity-type and second-order modelings. In
the former, the Reynolds stress in the mean Navier-
Stokes equation is modeled with the aid of the turbulent-
viscosity concept. In the latter, the Reynolds stress is
directly dealt with and the higher-order correlation func-
tions in its transport equation are modeled. In these
modelings, dimensional and tensor analysis and the in-
variance properties of the Navier-Stokes equation have
been a guiding principle, and little use has been made of
the detailed turbulence statistics in the wave-number
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space.

There has not always been much contact between the
preceding two approaches. During these ten years, many
efforts have been made towards the construction of the
one-point turbulence models using two-point closure
theories that were originally developed for the study of
isotropic turbulence. The examples of such work are a
two-scale DIA (TSDIA) [9,10] and the renormalization-
group (RNG) method [11,12]. In these studies, the mod-
els of the turbulent-viscosity type are first derived
[9,11,12] and then the second-order models are obtained
through the renormalization of the former [10].
Kolmogorov’s —3 power law for the energy spectrum
plays a central role in deriving the turbulent-viscosity-
type models, specifically, in the estimate of model con-
stants.

In the context of the one-point modeling, the —3

power law is closely connected with the equilibrium
turbulent-viscosity approximation to the Reynolds stress.
The prominent feature of the power law lies in the equi-
librium hypothesis of the inertial range; namely, the
range is supplied with energy by the energy-containing
range with € as the energy transfer or injection rate,
whereas this transferred energy is changed into heat with
the same rate in the dissipation range. However, strong
doubt has recently been raised about the validity of he
equilibrium form of the turbulent-viscosity expression in
such a nonequilibrium turbulence state as is encountered
in homogeneous shear turbulence. This fact also casts
doubt on the equilibrium hypothesis of the inertial range
in a sense different from the effect of intermittency.

In this work, we shall pay special attention to the
nonequilibrium effect of the turbulent-energy-production
process on the inertial range. We shall discuss the energy
spectrum in turbulent shear flows with the aid of the re-
sults of the TSDIA [9]. We shall make the discussion
from the viewpoint of the effect of the inertial-range spec-
trum on the Reynolds stress, specifically, on the turbulent
viscosity. This approach is rather indirect, compared
with the comparison of the energy spectrum with the
direct numerical simulation (DNS) results of a turbulent
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shear flow. The importance of the nonequilibrium effect,
however, will be understood more clearly in the sense
that the effect on the inertial-range spectrum manifests it-
self in the one-point turbulence models widely used in the
study of real-world turbulent flows. On the basis of this
discussion, we shall show that the energy-containing side
of the inertial range is strongly affected by the dynamical
property of the turbulent-energy-production process that
is related to the Lagrange derivative of the energy
transfer rate.

The present paper is organized as follows. The funda-
mental equations are given in Sec. II and the inertial-
range energy spectrum in isotropic turbulence is outlined
in Sec. III. The relationship of Kolmogorov’s 3 power
law with the isotropic turbulent viscosity in the one-point
turbulence modeling is discussed in Sec. IV. The energy
spectrum of the inertial range that includes the effect of
nonequilibrium properties is given in Sec. V. The impli-
cations of this spectrum are discussed in light of homo-
geneous shear turbulence in Sec. VI. The concluding re-
marks are given in Sec. VII.

II. FUNDAMENTAL EQUATIONS

The fluid motion at low Mach numbers obeys the

Navier-Stokes equation

%+(u-V)u=—Vp+vAu, (1)
with the solenoidal condition V-u=0, where u is the ve-
locity, p is the pressure divided by constant density, and v
is the kinematic viscosity.

We introduce the ensemble mean { ) to divide a quan-
tity f into the mean F (=(f)) and the fluctuation f’
(=f—F), where f=(u,p), F=(U,P), and f'=(u',p’).
Then the mean Navier-Stokes equation is given by

DY _ _9p+v-R+vaU, @
Dt
with V-U=0 and D/Dt=9/93t+U-V. Here R is the
Reynolds-stress tensor defined as

R,'j:_<uilu;> (3)
[(V-R),=(3/3x,)R, ] .

In the one-point turbulence modeling, R;; is often
modeled as
R;=—3K8;+vrS; , 4)

with the aid of the turbulent-viscosity concept. Here
K(=(u'?/2)) is the turbulent energy and
S;;(=0U;/0x;+0U; /3x;) is the mean-velocity-strain
tensor. The turbulent viscosity v is most typically writ-
ten as
2
ve=C, X c,=0.09, (5)
£

using K and its dissipation rate e=(v(du; /3x,)*).

The transport equations for K and the mean-velocity
counterpart K,,=(U?/2) are given by
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DK
F:PK_E-FV'TK—"VAK , (6)
DK 2
M_ j o
Dr Py +v ———axi +V-(—PU+RU)+vAK,,,
(7
where
P, =R EU—] (8)
K0 ax, 2
2
TK——< uT+p’ u’>. 9)

Here Py is usually called the turbulent-energy-
production rate. Since € is non-negative, K cannot be
sustained under vanishing mean-velocity gradients so
long as the turbulent energy is not supplied through
boundaries. On the other hand, Py also plays a role of
energy sink in the K,, equation (7). The mean motion is
supplied with energy by the P- (mean pressure) related
term in Eq. (7) that represents the energy injection
through the imposition of external forces on boundaries.
To put it briefly, the energy supplied through the pres-
sure P cascades towards #’ by the turbulence effect or Py
and is finally converted to heat with the rate.

III. INERTIAL-RANGE ENERGY SPECTRUM
FOR ISOTROPIC TURBULENCE

In homogeneous isotropic turbulence with vanishing
VU, attention is focused on u’. In this situation, Py van-
ishes and the turbulence state decays in time or is sus-
tained through the energy injection due to a random
force, etc. The fluctuation u’ is expressed in the Fourier
integral as

w= [w(k;t)exp(—ik-x)dk . (10)

Statistical properties of turbulence are characterized us-
ing the correlation functions of u’(k;¢).

The most typical second-order correlation function of
u’(k;¢) is the energy spectrum, which is defined as

K= [E(k)dk . (11)

From Eq. (10), E(k) is given by
E(k)8(k+k')=2mk*(u/(k;1)uj(k’;1)) (12)

[8(k) is the Dirac delta function].

A. Kolmogorov’s scaling law

The range of E(k) in isotropic turbulence at high Rey-
nolds numbers is roughly divided into three ranges: the
energy-containing, inertial, and dissipation ranges (see
Fig. 1, in which I is the length scale characterizing the
energy-containing range, and /[ =(v*/¢)'/*] is the dissi-
pation length scale). In the case of turbulent shear flows
with nonvanishing VU, the energy-containing range of u’
is associated with the K production mechanism that is
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FIG. 1. Schematic classification of the energy-spectrum
range: R, energy-containing range; R, inertial range; R, dis-
sipation range (kc=I¢ ! and kp=15").

given by Py [Eq. (8)]. Within the framework of isotropic
turbulence without such a mechanism, this range is mere-
ly described through the small-wave-number behaviors of
E(k). Therefore the existence of the universal properties
that are independent of the detailed properties of E(k) at
small wave numbers is a primary goal of the study of iso-
tropic turbulence.

In Kolmogorov’s scaling law [1], the energy transfer
rate from the energy-containing to inertial ranges is the
sole quantity characterizing the effect of the former. In
the inertial range, no energy dissipation occurs and there-
fore the rate is essentially equal to the dissipation rate.
Under this concept, E(k) is written as

E(k)=K. e’k ", (13)

where K, is the so-called Kolmogorov constant. One of
the major purposes of two-point closure theories has long
been the analytical derivation of Eq. (13).

B. Intermittency effects

At the stage of the preceding section, it is not clear
which of the following two processes is more important
for the inertial range: (a) the energy dissipation process
resulting in the energy transfer from the inertial to dissi-
pation ranges and (b) the energy injection process from
the energy-containing to inertial ranges. If the process (a)
is more important, the fluctuation effect of the local ener-
gy dissipation rate €' [ =v(du J /0x;)*] around ¢, which is
called the intermittency effect, may become an important
factor generating the deviation of E(k) and the velocity-
derivative statistics from Kolmogorov’s scaling law. This
standpoint leads to the log-normal model [4], the 8 model
[5], etc.

The effect of intermittency on E (k) is written as

E(k)=K ek 3 (klc) ™ . (14)

Here I. is the length scale characterizing the energy-
containing range, but it cannot be defined uniquely within
the framework of the current intermittency arguments.
We may adopt the correlation length of u’ as a typical ex-
ample of /.. The magnitude of the parameter u is depen-
dent on the statistical property of €’ and is estimated to
be about 0.17 from the observations. As a result, the in-
termittency effect on E(k) is not so important and be-
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comes small, specifically at the energy-containing side of
the inertial range or near k=I5"'. This is the reason ¢
has long been considered to be almost the sole quantity
determining the effect of the energy-containing range on
the inertial-range energy spectrum.

In the later discussion, we shall take the second stand-
point (b); namely, the turbulent-energy-production pro-
cess, specifically, its dynamical or nonequilibrium proper-
ty, is very important for E(k) of the inertial range.

IV. RELATIONSHIP
OF THE KOLMOGOROYV SPECTRUM
WITH ISOTROPIC TURBULENT VISCOSITY

In Sec. II, we noted that Eq. (5) is widely used as the
turbulent viscosity in the one-point expression for the
Reynolds stress (4). Let us consider Eq. (5) in light of the
Kolmogorov energy spectrum (13). Since K72 and I
are the velocity and the length scales characterizing the
energy-containing eddies, we may write the turbulent
viscosity v as

vp=K', (15)

apart from the numerical factor. From the fact that Eq.
(13) with k=I_"! corresponds to the energy-containing-
range energy spectrum at the inertial-range side, K is es-
timated as

K=IG'E(Ic =212 . (16)

From Egq. (16), we have
lc=K*/¢ . 17

The combination of Eq. (15) with Eq. (17) leads us to the
widely used turbulent viscosity (5).

The above discussion shows that Eq. (5) is founded on
the Kolmogorov hypothesis of the equilibrium energy
transfer from the energy-containing to dissipation ranges
through the inertial one. This point is also clear from the
derivation of Eq. (4) with Eq. (5) using the TSDIA [9] and
the RNG [11,12], in which the Kolmogorov spectrum
(13) plays a central role. In these methods, the isotropic
velocity fluctuation interacts with the mean-velocity gra-
dient to generate an anisotropic one. The latter leads to
the second term of R;; [Eq. (4)] with Eq. (5).

The comparison with the experimental and DNS re-
sults has already revealed some critical deficiencies of Eq.
(4) with Eq. (5). Such a typical instance is that it cannot
cope with the strong nonequilibrium state of turbulence
as is encountered in a flow under strong adverse pressure
gradients and homogeneous shear turbulence. In the case
of homogeneous shear turbulence discussed later, the tur-
bulence state represented by K and ¢ is spatially uniform,
but it continues to develop in time. As a result, the pro-
cess of energy transfer from the mean motion to the iner-
tial range through the energy-containing one is not in an
equilibrium state; namely, the energy-containing range is
greatly affected by de /3¢ in addition to € that plays a cen-
tral role in Kolmogorov’s scaling law. In reality, the
difficulty with the equilibrium turbulent viscosity (5) in
homogeneous shear turbulence can be overcome through
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the inclusion of the nonequilibrium effect like de /3¢ [13],
as will be referred to later.

In what follows, we shall discuss the relationship of the
inertial-range energy spectrum with the nonequilibrium
state of the energy-containing range.

V. INERTIAL-RANGE ENERGY SPECTRUM
UNDER NONEQUILIBRIUM EFFECTS

In the stationary state of isotropic turbulence, € is con-
stant in space and time. However, we can allow € in the
Kolmogorov spectrum (13) to depend on space and time
as long as its change is gradual. The condition for the
slow spatial change of € may be written as

k~l<<lg for Iy <k~ '<li. . (18)
Here Ig; is defined as
I =¢/|Ve| (19)

and represents a length scale characterizing the spatial
inhomogeneity of €. Equation (5), based on the Kolmo-
gorov spectrum, is applicable to the weakly nonequilibri-
um state of turbulence satisfying Eq. (18).

The turbulent-viscosity approximation (4) with Eq. (5)
has been applied with some success to the analyses of a
pipe flow, a wall flow, etc. These types of flows are in an
equilibrium state at least in the mainstream direction;
namely, the turbulence quantities, such as K and ¢, do
not change in the direction. On the other hand, the per-
formance of the approximation is poor in a turbulent flow
under strong adverse pressure gradients, a flow along a
curved boundary, etc. in addition to highly nonstationary
turbulent flows like homogeneous shear turbulence. In
the former flows, the change of turbulence quantities in
the mainstream direction is very large. This fact suggests
that in place of the Kolmogorov spectrum (13), the ener-
gy spectrum with nonequilibrium properties of tur-
bulence included is necessary for their description.

A. TSDIA formalism

The author [9] previously proposed a two-point closure
method for the study of turbulent shear flows, which is
the combination of the DIA with a multiple-scale
method. In the TSDIA, we introduce two space and time
scales, that is, the fast (§,7) and slow (X, T') variables:

&(=x), t(=t); X(=6x), T(=6¢), (20)
using a scale parameter § that is assumed to be small.
Then a quantity f is written as

f=F(X;T)+f"(&X;7,T), (21)

and f' is expressed in the Fourier representation of the
fast space variable £:

FUEXT,T)= [ f1(k,X;7, Thexp(—ik-E)dk . (22)
Moreover we expand f' in § as

kX, T)= 3 8'f,(k,X;7,T) . (23)

n=0

In the TSDIA, the equation for u;, does not depend
directly on the mean-velocity-gradient tensor
VxU[Vy=(3/0X;;i=1,2,3]. The VU-related effects as
well as the Lagrange derivative Duy/DT appear through
u, (n21) (D/DT=3/3T+U-Vy). As a result, the
Kolmogorov spectrum (13) may be extended to an expres-
sion with the weak dependence of € on space and time
through the slow variables X and 7.

B. Energy spectrum
with the nonequilibrium property included

The primary part of the energy spectrum given by the
TSDIA [9] is divided into the equilibrium part leading to
the Kolmogorov spectrum Ey and the nonequilibrium
one E:

E=Ey+Ey, (24)
where
EK=417k2Q(k,x;T,7',t) R (25)

EN=—47rk2fT G(k,x;'r,v'l,t)%Q(k,x;r,ﬁ,t)dT1 .

(26)

Here we should note that the replacement of X and T
with 8x and &t in the final stage of the analysis leads to
the automatic disappearance of the parameter §. In Egs.
(25) and (26), Q is the covariance of u; defined by

Q(k,x;7,7,0)8(k +k')=1Cu g (k,x; 7,0 Ju g (K',x;7,1))
27

and G is the response function for ug (see [9] for the de-
tails).

In order to see the relationship with the Kolmogorov
spectrum (13), we introduce the simple expressions for Q
and G:

Q(k,x;7,7,t)=Cge*?k ~11/3

Xexp(—Cue' k23—, (28)

G(k,x;7,7,t)=H(r—71')exp[ —Cye'*k?3(r—1")] ,
(29)

with e=¢(x;¢), where Cg and Cj, are numerical con-
stants, and H(7—7') is the step function.

The constants Cg and Cy, should be determined from
the analysis of the u; equation. On applying the DIA for-
malism to the equation straightforwardly within the Eu-
lerian framework, we encounter the difficulty of the in-
frared divergence in the G equation, as is known well in
the study of two-point closure methods for isotropic tur-
bulence. In order to avoid this difficulty, the Lagrangian
treatment of the u; equation has been proposed since the
pioneering work of Kraichnan (see [3] and the references
cited therein). In this work, however, we make use of the
result that was obtained by a simple method; namely, we
remove the infrared divergence in the G equation so that
the resulting Kolmogorov constant K, (=4m7Cy) should
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be consistent with the observational counterpart, which
scatters around 1.5. As a result, we have [14]

Cs=0.12, Cy,=0.42. (30)
From Egs. (24)-(26) and (28)-(30), we have

E(k)=Koe k= |1=Cye 2Lk~ |, ()
where K;,=1.5 and Cy=0.60 Equation (31) shows that
the deviation of the inertial-range energy spectrum gen-
erated by the nonequilibrium effect is given by a —7
power correction. In the case of homogeneous shear tur-
bulence, the existence of a —% power law in the shear-
stress spectrum was also discussed by Leslie [15].

Let us introduce the length scale [, that characterizes
a dynamical property of the turbulent-energy-production
process:

De
=e/ | 3%
PTE lDt

Using Eq. (32), we can rewrite Eq. (31) as

De ](klp)_2/3] ’

32
(32)

E(k)=Ke¥*k ~%/3 |1—Cysgn

Dt

(33)

where sgn(4)=1 and —1 for 4 >0 and 4 <O, respec-
tively. In Sec. VI, we shall show the importance of the
Ip-related term in turbulent shear flows. Through the
discussion, the physical meaning of /, will be clarified.

V1. DISCUSSIONS

In Sec. V, it was shown that the nonequilibrium prop-
erty of the inertial-range spectrum is related to the
Lagrange derivative of €. In engineering and scientific
flow phenomena, there are a number of turbulent flows in
which the Lagrange derivatives of K, &, etc. do not van-
ish. Such flows, however, are geometrically complicated
and it is difficult to obtain the detailed properties of tur-
bulence quantities such as € by using experimental and
DNS methods.

A typical instance of the flows whose geometrical
structures are simple and which still retain part of the
D /Dt effect is homogeneous shear turbulence. In this
sense, the turbulence quantities such as K and € are spa-
tially constant, but they continue to develop in time, and
De /Dt is retained as de /9t. Several DNS’s of homogene-
ous shear turbulence have already been done since the
work of Rogers and Moin [16] and the temporal
behaviors of turbulence quantities have been examined in
detail. In what follows, we shall make use of the DNS re-
sults of Matsumoto, Nagano, and Tsuzi [17,18] to see the
role of the nonequilibrium or D /Dt effect in Eq. (33).
Here it is not simple to use the DNS results to clearly
identify with the deviation from the Kolmogorov law (13)
in the power-law form since the energy-containing side of
the inertial range is generally contaminated by various
effects associated with the turbulent-energy-production
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process. So we capture the D /Dt effect in Eq. (33)
through the contribution to the turbulent viscosity al-
though such a verification is rather indirect.

A. Breakdown of the equilibrium turbulent viscosity

In homogeneous shear turbulence with the mean veloc-
ity (Sy,0,0), the time development of K is described by

from Eq. (6) (S is the mean shear rate). Under the
turbulent-viscosity approximation (4), we have

Py =v;S? (35)

from Eq. (8).

On using Eq. (34) to examine the validity of Eq. (5) for
v, we have two approaches. One is to use the widely
adopted model equation in the K-e model, which is given
by

2
%§=Cel %ﬁ(“csz% ’
where C,;=1.43 and C,, =1.9. Another is the use of the
DNS database as €. Both the approaches lead to a simi-
lar conclusion; namely, the time development of K ob-
tained using Eq. (5) as vy is entirely different from the
DNS counterpart. In Fig. 2, the results based on Egs. (5)
and (34)-(36) are shown in the comparison with the DNS
data [13]. Here the initial strain rate SK /g, is 28.3 (the
initial values K and €, are 0.2). This result indicates that
the Kolmogorov spectrum leading to Eq. (5) suffers from
a serious drawback at the energy-containing side.

In order to avoid the difficulty with the equilibrium
turbulent viscosity (5), the inclusion of the D /Dt effect in
v has recently been proposed with the aid of the results
of the TSDIA [13]. Namely, Eq. (5) was replaced with a
simple nonequilibrium turbulent-viscosity model

(36)

v Dv
Xk 1 TV (37)
'VTK € VTK Dt

where vx corresponds to vy of Eq. (5) and C=1.3 [the
subscript K of vx means the correspondence to the Kol-

mogorov spectrum (13)]. We use this model at St =2 to
avoid effects of the artificial initial conditions of the

K
L0

0.8¢
0.8
0. 4f
0.21> .

0 St
001 23 458

FIG. 2. Time development of K from St=2 [13]: @, DNS re-
sult [17,18]; — — —, K-e model based on Eq. (5); , result
based on Eq. (37) (S'is the mean shear rate and ¢ is the time).
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DNS. The result is also plotted in Fig. 2, and the
difficulty with Eq. (5) has been removed. The result ob-
tained by starting at St =1 hardly differs from it. From
this consideration, we may conclude that the nonequili-
brium effect in the spectrum (33) plays a very important
role at the energy-containing side of the inertial range.

The nonequilibrium effect closely related to the
Lagrange derivative D /Dt vanishes in fully developed
turbulent flows such as a pipe flow, a channel flow, etc.
This is the reason the equilibrium form (5) based on Eq.
(25) can give reasonable results in those flows. However,
we should note that vanishing of such an effect does not
always signify that the turbulence state is in equilibrium.
The typical examples are the buffer layer and the central
region in a fully developed channel flow. In the latter,
the dissipation rate balances with the diffusion rate in the
K equation (6), and the momentum is transferred towards
the center of a channel through the diffusion effect. The
inclusion of such an effect is left for future work.

Let us consider what accounts for the above improved
agreement. In the equilibrium turbulent-viscosity model
given by Eq. (4) with Eq. (5), R;; is written in terms of
single-time quantities. In highly nonstationary tur-
bulence like homogeneous shear turbulence, the effects of
the low-wave-number components of motion are
transferred to the high-wave-number ones with some
time lag. The equilibrium model cannot describe this
time-lag effect and estimates the turbulence state on the
basis of the information at the latest time. This is the
reason the equilibrium model often overestimates the tur-
bulent viscosity in a situation in which the turbulence is
intensified rapidly. In the present model (37), the d/d¢
term expresses such a time-lag effect in homogeneous
shear turbulence.

The U-V part of D /Dt becomes very important in the
situation in which turbulence properties change much in
the mainstream direction. Such an example can be seen
typically in the case of shock-wave/turbulence interac-
tions. One of their prominent features is that, entirely
similarly to homogeneous shear turbulence, the turbulent
viscosity should be considerably decreased near a shock
wave, compared with the equilibrium one (5). This fact is
also supposed to indicate the importance of nonequilibri-
um effect on the energy spectrum.

Let us refer to the second-order models represented by
the model of Launder, Reece, and Rodi [19] in the con-
text of the nonequilibrium turbulent-viscosity model (37).
In these models, the modeling of the pressure/velocity-
strain correlation function {p’(du;/dx;+du//3x;))
plays a central role. The second-order model of Launder,
Reece, and Rodi type can be derived through the renor-
malization of a higher-order model of the turbulent-
viscosity type [10]. This fact signifies that the latter mod-
el can also be obtained by solving the second-order model
concerning R;; by an iteration method. From this rela-
tionship, we can see that in the second-order model, the
D /Dt terms in the turbulent-viscosity-type model are ab-
sorbed into the DR;; /Dt term and the modeled expres-
sion for {p'(3u;/dx;+3u;/dx;). In the current second-
order modeling, the D /Dt effect has been overlooked in
the modeling of {p'(3u; /dx;+3u;/3x;).
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B. Length scale characterizing
the turbulent-energy production process

In the present work, we showed that besides /- and [,
another length scale /, defined by Eq. (32) is indispens-
able for expressing the nonequilibrium property of the
inertial-range energy spectrum. Considering that € is the
energy transfer rate from the energy-containing to iner-
tial ranges, we can understand that [, is related to the
dynamical process of the turbulent-energy-production
process. Specifically, in the case of homogeneous shear
turbulence, a nonequilibrium property of the energy-
containing range reflects on d¢ /9t that expresses the tem-
poral change of the rate of energy transfer to the inertial
range.

From Egs. (17) and (32), we have

e _[Tc | (38)
lP TP ’
where
Tc=K/e, (39)
De
P 5/ Di (40)

Here To(=1-/K'/?) is the turnover time of eddies with
size Ic, where T, is a time scale characterizing the
dynamical property of the energy-containing range. In
the inertial range, the time scale (7;) intrinsic to
Kolmogorov’s scaling law is related to the wave number

k as

—e 1323

T (41a)

or
k~l=gl2r2 (41b)

Equation (41b) indicates that two time and length scales

in the inertial range, which are expressed as
(I1y>Tm3n =1,2), obey
32
l T
I T

Equation (42) is originally valid for the inertial range, but
it is very similar to Eq. (38). This fact is interesting for
the following two reasons. One is that /- and [p, which
are the length scales characterizing the ranges outside the
inertial one, possess the inertial-range length-time rela-
tion. Another is that in contrast with Eq. (42), the —3
power law for the energy spectrum is much affected by
the nonequilibrium effect of the turbulent-energy-
production process.

Using the DNS results [17,18], we can examine the
time development of I /Ip, which is given in Fig. 3 and
shows that [, is larger than /- characterizing the bound-
ary between the energy-containing and inertial ranges. In
the production process of turbulent energy, the mean-
velocity gradient VU plays a central role, as can be seen
from Eq. (8). Therefore such a process is closely connect-
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FIG. 3. Time development of /. /I, based on the DNS result
[17,18].

ed with the low-wave-number properties of turbulence.
The relation Ip > is consistent with the fact that I,
characterizes a dynamical property of the turbulent-
energy-production process.

Finally, let us refer to the effective energy transfer rate
and anisotropy of velocity fluctuation. Equation (33) for
E(k) is rewritten as

E(k)=Keifk 77, 43)

where €4 is defined as
3/2
(44)

Eg/€= |1—Cysgn

2_5_ —2/3
o ](kz,,)

and may be called the effective energy transfer rate. Let
us consider the effect of the sign of De/Dt in Eq. (44). In
the case of homogeneous shear turbulence, De/Dt is re-
placed with de/dt and is positive. Therefore Eq. (44)
signifies that the energy transfer rate decreases
effectively, compared with the Kolmogorov counterpart
€. This situation can be explained as follows. In this
case, the turbulent energy K continues to be generated in
the low-wave-number range, but its transfer towards the
inertial range is made with some time lag. As a result,
the energy transfer rate decreases effectively, compared
with the energy generated and accumulated in the low-
wave-number range. The opposite situation occurs in the
case of negative de /9t for isotropic turbulence.

In turbulent shear flows including homogeneous shear
turbulence, the velocity fluctuation becomes statistically
anisotropic. One of the representative ingredients gen-
erating such anisotropy is the mean-velocity gradient
VU. In this context, the concept of the energy spectrum
is less clear, compared with the case of isotropic tur-
bulence. The nonequilibrium effect appearing in the en-
ergy spectrum is distributed among {u,;?), (u?), (u;?),
and its importance is unchanged. The anisotropy of tur-
bulent intensities has been discussed in detail in the con-
text of the one-point turbulence modeling [8-10,12].

VII. CONCLUDING REMARKS

In this work, we investigated the nonequilibrium effect
of the turbulent-energy-production process on the
inertial-range spectrum, with the aid of the TSDIA re-
sults. We showed that such properties related to the
Lagrange derivative of the energy transfer rate have
strong influence on the inertial-range energy spectrum at
the energy-containing side. In the context of the one-
point turbulence modeling, the resulting deviation of the
inertial-range spectrum brings the Lagrange-derivative-
related nonequilibrium effect into the turbulent viscosity.
This effect resolves the critical difficulty that the equilib-
rium turbulent-viscosity model encounters in highly
time-dependent turbulent flows such as homogeneous
shear turbulence. In the context of the relationship with
the intermittency effect on the energy spectrum that
arises from fluctuation of the local energy-dissipation
rate, its importance increases at the dissipation-range side
of the inertial range, contrary to the present nonequilibri-
um effect.
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